If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5p^2-20=180
We move all terms to the left:
5p^2-20-(180)=0
We add all the numbers together, and all the variables
5p^2-200=0
a = 5; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·5·(-200)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*5}=\frac{0-20\sqrt{10}}{10} =-\frac{20\sqrt{10}}{10} =-2\sqrt{10} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*5}=\frac{0+20\sqrt{10}}{10} =\frac{20\sqrt{10}}{10} =2\sqrt{10} $
| 9x-6x+17=0 | | S=n×180 | | 5(e+3)=35 | | 2x-5=5-1 | | X^2+3x+37=0 | | x^2+14x-223=0 | | 36x+11=12x+103 | | 2-5(25z-30)=3/4(12z+16) | | -(4-2y)+3y=1 | | 6+p/2=p | | 8(3-p)=9+p | | (2+3x-4x^2)^7=0 | | 3x-1/x-5=2 | | 8+p=-p+2p | | 5^x+4=8^x | | 8+7-2+3p=4p | | (m-2)^2=0 | | 7÷7p=91 | | x(x-9,5)=0 | | x-0.4x=100000 | | 5(n+7)(n+6)=0 | | 2x^2-8=19 | | (m+2)(m-1)=5m-6 | | 8p+8=72 | | 4=z3 | | 5^6x+4=(125)^4x+1 | | 8p-7p=38 | | 8x^2-5=19 | | 8v+42=-12+4(2v-12) | | 5m^2=85 | | x+14x-600=0 | | 8(p+3)=7 |